
DRAFT
ASP-I for RADGUNS Software Quality Assessment

Update: 11/17/97 6-1 RADGUNS V.2.0

DRAFT

6.0 SOFTWARE QUALITY ASSESSMENT

The Software Quality Assessment (SQA) portion of ASP-I presents the results of an
investigation of three major areas of software quality: programming conventions,
computational efficiency and memory utilization. The following paragraphs discuss the
various components that make up a software quality analysis. This is not an exhaustive list,
but these sections cover most of the issues that need to be addressed in order to provide an
adequate assessment of the code quality. It should be noted, however, that selection of
evaluation criteria is a subjective process and that different factors may or may not be
applicable to certain models and their implementations. For example, some quality factors
may be language and/or compiler dependent or be tied to a specific design requirement not
applicable to a class of models.

RADGUNS v.2.0 is a one-on-one simulation of specific antiaircraft artillery systems versus
non-reactive aerial targets. In addition to a variety of input files, RADGUNS v.2.0 contains
315 subroutines and 84 functions written in FORTRAN. These routines are grouped into
major functional units in the following files:

a. RAD1-RAD5 (radar systems)
b. GUN7-GUN130 (AAA artillery systems)
c. RGGUN (routines common to all AAA systems)
d. RGSENSOR (sensor systems other than radar)
e. RGPDET (probability of detection routines)
f. RGECM (countermeasure routines)
g. RGIO (input/output models)
h. RGUTIL (routines common to all weapons systems)
i. RGDIME (ACES/PHOENIX interface)

The goal of this assessment was to evaluate the syntactical construction of these
FORTRAN routines. To meet this goal, 27 subroutines and 7 functions were reviewed for
adherence to programming standards, algorithm clarity, computational efficiency, and
software maintainability. The individual subroutines and evaluations are contained in
Appendix A. A list of the categories addressed is shown in Table 6-1. Each module
examined was rated on a scale of 0 (poor) to 5 (excellent) for each of the categories listed
in the table.

TABLE 6-1. Software Evaluation Criteria.

MOE #1 - Use of Standards: MOE # 3 - Computational Efficiency:

Criterion #1: Readability Criterion #1: Mixed mode calculations

Criterion #2: Modifiability Criterion #2: Use of library functions

Criterion #3: ANSI standards Criterion #3: Nested computations

MOE #2 - Programming Conventions: MOE # 4 - Maintainability:

Criterion #1: Use of comments and headers Criterion #1: Portability

Criterion #2: Use of formatted statements Criterion #2: Memory management

Criterion #3: Logical I/O devices Criterion #3: Use of COMMON blocks

Criterion #4: Variable declarations Criterion #4: Modularity

Criterion #5: Variable initialization Criterion #5: Subroutine tractability

Criterion #6: Variable naming conventions

Criterion #7: Algorithm clarity

DRAFT
Software Quality Assessment ASP-I for RADGUNS

RADGUNS V.2.0 6-2 Update: 11/17/97

DRAFT

In the course of the evaluation, if a MOE was not applicable to a particular software
module, an “N” was placed in that field. An example of this was the “use of formatted
statements.” Some of the subroutines did not contain any format statements and were
therefore not graded against that criterion. For each criterion, a maximum score was
calculated based on the total number of modules evaluated multiplied by 5. The absolute
sum of the scores given and the percentage of the maximum as well as the average score
was tabulated and is presented in Table 6-2.

In general, RADGUNS v.2.0 is a well-constructed collection of modular programs which is
easy to understand, modify, and maintain. The overall average of all the modules analyzed
places the code at 93% of the maximum possible score. The majority of the flaws
uncovered were minor in nature (variables not being described in the comments and unused
common block variables were two of the most common). More major flaws uncovered
included the existence of unused/incomplete code and subroutines that require user
modification prior to simulation execution.

TABLE 6-2. Summary of Software Quality Assessment.

Routine
MOE

1.1
MOE

1.2
MOE

1.3
MOE

2.1
MOE

2.2
MOE

2.3
MOE

2.4
MOE

2.5
MOE

2.6
MOE

2.7

MOVANT 3 4 5 4 N N 4 5 5 4

SIGNL 3 4 5 4 N N 4 5 5 4

RCVRT 4 4 4 3 4 5 4 5 5 4

ANTTRK 5 5 5 4 N N 5 5 5 5

SPLGAT 5 5 5 5 N N 5 5 5 5

RSERVO 5 5 5 4 N N 5 5 5 5

MTITRK 5 5 5 4 N N 5 5 5 5

BURST 4 5 5 3 N N 5 5 5 4

FCCOMP 5 5 5 5 N N 5 5 5 5

KD 5 5 5 1 N N 5 5 5 5

NOISE 5 4 5 3 N N 4 5 5 4

SWEPTA 5 4 5 3 N N 4 5 5 4

FCCOM1 4 5 5 3 N N 5 5 5 4

SHOOT 4 5 5 3 5 5 5 5 5 4

RGINP18 5 5 5 5 5 5 5 5 5 5

CHKTRK 4 5 4 4 3 5 5 5 5 4

EVENT 3 5 4 5 4 5 5 5 5 5

PDET 5 5 5 4 N N 5 5 5 5

DGAM 3 4 5 N N 5 5 5 5 3

OPLEA1 4 5 5 4 N N 5 5 5 5

SPDRNG 4 4 4 4 N N 5 5 5 4

AZDIFF 5 5 5 4 N N 5 5 5 5

CLUTG 4 5 5 4 3 5 5 5 5 4

HITPRB 4 5 5 5 4 5 5 5 5 5

ORIENT 5 5 5 4 N N 5 5 5 5

SRCH1 5 5 5 4 4 5 5 5 5 5

LEGDY 5 5 5 4 N N 5 5 5 5

MYSPEC 5 5 5 4 N N 5 5 5 5

DRAFT
ASP-I for RADGUNS Software Quality Assessment

Update: 11/17/97 6-3 RADGUNS V.2.0

DRAFT

rgdime.f 3 3 1 3 1 1 1 1 5 3

Count 29 29 29 28 9 10 29 29 29 29

Sum 126 136 137 107 33 46 136 141 145 130

Average 4.3 4.7 4.7 3.8 3.7 4.6 4.7 4.9 5.0 4.5

Max 145 145 145 140 45 50 145 145 145 145

Percent 87% 94% 94% 76% 73% 92% 94% 97% 100% 90%

Module
MOE

3.1
MOE

3.2
MOE

3.3
MOE

4.1
MOE

4.2
MOE

4.3
MOE

4.4
MOE

4.5

MOVANT 5 5 3 5 4 5 4 5

SIGNL 5 5 5 5 5 5 5 5

RCVRT 4 5 5 4 4 5 4 5

ANTTRK 5 5 5 5 5 5 5 5

SPLGAT 5 5 5 5 5 5 5 5

RSERVO 5 5 5 5 5 5 5 5

MTITRK 5 5 N 5 5 5 5 5

BURST 5 5 5 5 5 5 5 5

FCCOMP N 5 N 5 1 N 5 5

KD 5 5 N 5 5 N 5 5

NOISE 5 5 5 5 4 5 5 5

SWEPTA 5 5 5 5 4 5 5 5

FCCOM1 5 5 5 5 4 5 5 5

SHOOT 5 5 5 5 4 5 5 5

RGINP18 N 5 N 5 5 5 5 5

CHKTRK N 5 N 5 5 5 5 5

EVENT N 5 N 5 4 4 5 5

PDET 5 5 5 5 5 5 5 5

DGAM 5 5 5 5 5 N 5 5

OPLEA1 5 5 5 5 5 5 5 5

SPDRNG 5 5 5 5 3 4 5 5

AZDIFF 5 5 N 5 5 5 5 5

CLUTG 5 5 5 5 5 5 5 5

HITPRB 5 5 5 5 5 5 5 5

ORIENT 5 5 N 5 4 4 5 5

SRCH1 5 5 5 5 4 4 5 5

LEGDY N 5 5 5 4 4 5 5

MYSPEC 5 5 N 5 4 4 5 5

rgdime.f 3 3 3 1 1 1 1 1

Count 24 29 20 29 29 26 29 29

Sum 117 143 96 140 124 120 139 141

Average 4.9 4.9 4.8 4.8 4.3 4.6 4.8 4.9

Max 120 145 100 145 145 130 145 145

Percent 98% 99% 96% 97% 86% 92% 96% 97%

TABLE 6-2. Summary of Software Quality Assessment. (Contd.)

Routine
MOE

1.1
MOE

1.2
MOE

1.3
MOE

2.1
MOE

2.2
MOE

2.3
MOE

2.4
MOE

2.5
MOE

2.6
MOE

2.7

DRAFT
Software Quality Assessment ASP-I for RADGUNS

RADGUNS V.2.0 6-4 Update: 11/17/97

DRAFT

6.1 PROGRAMMING CONVENTIONS

Use of standards is broken into three categories: readability, modifiability, and adherence
to ANSI standards. Programming practices which enhance readability include simplicity
of program statements and the use of text alignment, spacing, and case.

Programming practices which aid in modifying code include simplicity of program
statements and adherence to structured programming techniques which use standard
control sequences. ANSI standards are documented in Reference 37 and encompass the
form and interpretation of programs expressed in FORTRAN.

ANSI standards are fully maintained in RADGUNS v.2.0. Adherence to naming
conventions, character positioning, order of statements, and hierarchical structure of logical
expressions were seen throughout the code.

6.1.1 Use of Embedded Comments

Comments should not only identify the individual parts of the code (e.g., variable
descriptions), but should also describe the functionality and purpose of the tasks being
performed by the code. Comments also need to be distributed throughout the code so the
user can correlate the comment with the functionality it is describing.

In the RADGUNS v.2.0 code examined, most routines were liberally sprinkled with
comments. On average, roughly one-third of the lines of code examined constituted
comments. Frequently, “blocks” of code are headed up by comments which identify the
purpose of the code. This is very helpful to the user. Comments which describe the
functionality of the code are less frequent and would be extremely useful to users. As an
example, function DGAM contains a single comment which is shown below.

C (INTEGRAL = 1 - (SUM, J = 0 TO N, OF EXP (J*ALOG(B) - B - ALOG(NFAC

This rather terse (and incomplete) comment does tell us we are calculating an integral, but
it does not tell us the integral’s function. In Reference 38, it is seen that the function
calculates the series solution of the incomplete gamma function which is represented as:

To the user, the latter information is much more helpful and should be described within the
routine. The reference should also be listed in a comment.

6.1.2 Use of Module Preambles

The majority of modules examined contained detailed preambles which describe the
purpose of the module along with a definition of each of the variables used within the
module. Ideally, every variable should be included in the preamble list. Often COMMON
block variables are omitted from the description.

Integral=1 − e

−B − j ln B() − ln i()
i = 2

N
∑

j = 0

N
∑

DRAFT
ASP-I for RADGUNS Software Quality Assessment

Update: 11/17/97 6-5 RADGUNS V.2.0

DRAFT

6.1.3 Source Code Formatting

Simplicity of code is very important. Programmers can often condense several calculations
into one line of code, making it difficult to decipher and modify later. Better programming
practice is to break out the calculations into simple steps. As an example, suppose we wish
to assign a variable y the value of +3 if the variable x is greater than 5, -3 if x is less than
-5, and 0 if x is between -5 and 5. One way to accomplish this is the following:

y =(((x .lt. -5) .or. (x .gt. 5)) * sign(x) *3).

A more straightforward approach to coding this task is:

if (x .lt. -5) then
y = -3

else if (x .lt. 5) then
y = 0

else if (x .gt. 5) then
y = 3

endif

Statements frequently come in “groups” or “blocks” which only make sense when taken as
a whole. Separation of the “blocks” with blank lines helps direct the reader in much the
same way as a period indicates the completion of a sentence. Additionally, indenting of
control structures such as if, then, else clauses or do loops can visually illustrate to the
reader what is being controlled and how.

Since case is not significant in FORTRAN, it can be used to promote readability.
Consistently dedicating upper or lower case text to comments, parameters, and function
call statements can assist the reader in distinguishing between these items.

There are a small number of essential control structures which occur over and over again.
It is good programming practice to develop a standard approach to representing these
structures and to then attempt to apply these representations uniformly to each
programming task. In that way, they will be easily recognizable and easily modifiable. The
two main types of control structures are iteration (do) loops and if structures. Control
structures to avoid are assigned “goto” and assign statements, computed “goto” statements,
and arithmetic if statements.

RADGUNS v.2.0 code utilizes the above principles in all subroutines and function routines
analyzed. Indeed, the programming example given above is logic which appears in several
of the routines (e.g., assigning a gain factor as a function of antenna position). Control
structures are indented and standard approaches to representing similar logic is maintained
across most routines. Blocks of related statements are separated by blank lines or comment
lines and simple, straightforward representations of algorithms are implemented.

6.1.4 Logical File Processing

Algorithm clarity results from the proper application of the items discussed so far: use of
good programming standards and conventions, thoughtful visual presentation, simplicity of
task representation, and clear informative comments. The routines reviewed in this

DRAFT
Software Quality Assessment ASP-I for RADGUNS

RADGUNS V.2.0 6-6 Update: 11/17/97

DRAFT

assessment satisfied the majority of these goals and were generally easy to read and
understand.

Format statements were used in conjunction with input/output statements. They provide
information which directs the editing between the internal representation and the character
strings of a record or a sequence of records in the file. As mentioned earlier, most of the
software modules reviewed did not contain format statements. Of the routines that did,
most involve either printing error messages or processing data output. The format
statements follow standard ANSI practices and the style of the output is both readable and
useful. As this analysis of the code was predominantly syntactical, the completeness of
both the type of data and error messages output was beyond the scope of this assessment.

Similar comments can be made regarding the logical I/O statements as those made for the
format statements.

The user determines specific model input and output options via formatted parameter files.
The user is guided through a series of questions and available options in the selection of
specific simulation input and output options. Having a structured set of simulation options
helps ensure all necessary parameters get specified and that the user will generate useful
and meaningful output.

6.1.5 Variable Declarations

It is good programming practice to declare all variables and identifiers in explicit “type”
statements (REAL, INTEGER, etc.), even though the implicit declaration rules of
FORTRAN do not require this. In the routines analyzed for RADGUNS v.2.0, the
programmers typically rely on the implicit declaration rules and only use variable
declaration statements when they wish to override the implicit conventions.

Another good programming practice is to explicitly initialize all variables at the start of the
subroutine rather than rely on the implicit FORTRAN default values. In RADGUNS v.2.0,
the programmers explicitly initialize most variables.

The variable naming conventions used in RADGUNS v.2.0 are, in general, well thought out.
It is usually easy to determine the meaning of a variable or parameter from the name,
something which is very useful when trying to understand or modify the code.

6.1.6 Programming Logic

The quality of the programming for RADGUNS v.2.0 is generally good. Each subroutine
is limited to one specific modeling task. Data is passed in and out through call or common
block statements. No hardware dependent extensions or calls or use of unnecessary entry
or exit calls was noted in any of the modules examined.

6.2 COMPUTATIONAL EFFICIENCY

This section discusses elements of the code that affect efficient implementation and
execution of the software. Computational efficiency is subdivided into three categories:
modularity, algorithm development, and variable allocation.

DRAFT
ASP-I for RADGUNS Software Quality Assessment

Update: 11/17/97 6-7 RADGUNS V.2.0

DRAFT

The RADGUNS v.2.0 software was not compiled on a variety of platforms and therefore
the true portability was not assessed. However, adherence to ANSI standards, explicit
declaration and initialization of variables, and modularity of code all go toward ensuring
portability of code.

6.2.1 Modularity

RADGUNS v.2.0 models 5 radars and 19 antiaircraft gun systems. Each of these have been
modeled as stand-alone software modules. As one might suspect, there is considerable
overlap of functionality between each of the radars and each of the gun systems.
Subroutines common to each of the radars appear 5 times and subroutines common to each
of the gun systems appear 19 times. While the subroutines have identical names, they are
not entirely identical and minor modifications customizing them to the particular system
exist. While this type of duplication may seem like an inefficient use of memory, the
structure allows the user the greatest flexibility and ease of implementation in running the
simulation. The one caveat to this would be the incorporation of new functionality. The
programmer would need to be aware that additional functionality changes may need to be
inserted in multiple locations.

6.2.2 Algorithm Development

As mentioned earlier, the programmer must balance clarity and simplicity with efficient
code. While condensing code down to the absolute minimum number of words may be
crucial for on-board software where memory space is at a premium, for simulation code run
on workstations and requiring substantial user interface, clarity of code is the major driver.
RADGUNS v.2.0 programmers have recognized this need and have designed the code
appropriately. Calculations are kept simple and straightforward. Common library
functions are utilized and repetitive code is typically nested via calls to subroutines
dedicated to the repetitive task. A majority of the code consists of branching logic based
on user-input parameters. The majority of the branching logic is explicitly called out by
“if” structures. This type of logic could be condensed to take fewer lines, but much of the
clarity to the user would be lost as a result.

6.2.3 Variable Allocation

Variables in RADGUNS v.2.0 are allocated either through common block statements or
dimension statements.

6.3 MEMORY UTILIZATION

Efficient use of memory by the software has become less important than other quality
factors due to its declining cost and increasing availability. RADGUNS v.2.0 is not a real-
time simulation restricted to limited host platforms. RADGUNS v.2.0 programmers
implemented proper variable specification and array size declarations throughout the
software modules.

6.3.1 Global Memory

COMMON blocks are widely and effectively used in RADGUNS v.2.0 code. In a minor
number of cases, COMMON block parameters were passed into subroutines which did not
use them.

DRAFT
Software Quality Assessment ASP-I for RADGUNS

RADGUNS V.2.0 6-8 Update: 11/17/97

DRAFT

6.3.2 Local Memory

Local variables in RADGUNS v.2.0 were found to have correct and sufficient memory
allocation. There were rare instances of variables being passed in through the module call
statement which were never used within the module.

6.4 IMPLICATIONS FOR MODEL USE

Some improvements in the area of standards for RADGUNS v.2.0 include the following:

a. The case and notation of the comments should be standardized. Sometimes the
comments are in uppercase, sometimes lowercase, sometimes indented,
sometimes separated by rows of asterisks or blank rows, and sometimes directly
above the executable code. Having all the comments (for example) left-
justified, lowercase, and separated by a blank line would make them stand apart
from the executable code, allowing the reader to easily scan through them.

b. All routines should contain a standardized header. Almost all of the routines
examined contain an initial set of comments which provide two types of
information. First, the comments describe what tasks the routine performs, and
second, they provide a descriptive list of the variables, arrays, and constants
used within the routine. The level of detail of both types of information varies
from routine to routine. Some have no descriptions whatsoever (e.g., function
DGAM). Most routines, however, have descriptions for the majority of
parameters used within the module. Often common block parameters are not
described, and some parameters which were likely deemed to be self-
explanatory (e.g., common block constant TWOPI) are omitted from the
commented list. While one can usually figure out from the variable name and
contextual setting what its purpose is, it is cumbersome to have to track down
the one subroutine that contains the definition of interest. All parameters should
be included in the descriptive list in each routine in which the parameter is
utilized.

c. Variables should be listed in alphabetical order, both in the descriptive
comments and in the variable declaration statements. This was not uniformly
the case in the routines examined.

d. Centralizing the format statements into one location (typically, just prior to the
END statement) assists the reader immensely when a single format statement is
used by multiple read/write statements. The majority of the routines examined
did not contain format statements, but those that did were inconsistent about
their placement within the code. Additionally, the format statement numbers
did not always appear in numerically ascending order. Again, this makes it
difficult for the reader to track down the location of the statements within the
code.

e. Parameter-dependent calls requiring the user to enter the subroutine and modify
the code should be eliminated. An example of this was found in subroutine
CLUTG. This subroutine computes the power that the radar receives from a
ground clutter patch at the specified range, provided the radar beam intersects
the earth’s surface at that range. Calculation of the surface area intersected is

DRAFT
ASP-I for RADGUNS Software Quality Assessment

Update: 11/17/97 6-9 RADGUNS V.2.0

DRAFT

based on the weapon system. Two calculations are present, and one is
commented out while the other is active. If the user-inputs require the non-
active area calculation, the user has to go to the source code, toggle the
comments, recompile and then execute the simulation. For these cases, logic to
select the appropriate calculations should be incorporated into the routine and
so be transparent to the user.

f. Unused/incomplete code should be eliminated. The RADGUNS v.2.0 program
entitled “rgdime.f” consists of a collection of unfinished subroutines whose
function is to add ACES/PHOENIX simulation capabilities. These subroutines
are clearly “works in progress” and good configuration management practice
should inhibit the inclusion of unfinished code in baseline versions of the code.

DRAFT
Software Quality Assessment ASP-I for RADGUNS

RADGUNS V.2.0 6-10 Update: 11/17/97

DRAFT

